当前位置: 首页 > 歡迎 > 老虎机游戏

老虎机游戏

时间:2020-04-09 19:03:24作者:Mckay

导语:老虎机游戏

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

老虎机游戏

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛,见下图

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛。老虎机游戏

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

北极星太阳能光伏网讯:有机太阳能电池的聚合物组合方式有千百种,如何找到最适合材料,为当前科学家绞尽脑汁想得出的成果,近日日本科学家试图通过人工智能技术减少搜索材料时间,帮助有机太阳能踏进商业化门槛。

有机太阳能电池具有可挠与低成本优势,利用导电聚合物或小分子吸收光并转移电荷,只要少量有机物就可吸收大量的光。其制造方式也较简单,可采用低价材料和简易印刷技术制程,可以说是太阳能光伏发电产业的明日之星。

然而目前有机太阳能电池的光电转换效率太低、处在11%~12%之间,距离商业化标准15%还有一段距离,科学家也还没找到最适合的聚合物材料,因此有机太阳能还无法达到商业化。日本大阪大学工学院准教授长泽慎司(ShinjiNagasawa)表示,聚合物与有机太阳能电池的短路电流(short-circuitcurrent)有关,会大大影响太阳能板的光电转换效率。

但聚合物由受体单元、予体单元、隔片、烷基链组成,研究员佐伯昭纪(AkinoriSaeki)补充,假设每个单元有20种选择,排列组合数会超过100万。且由于转换效率是综合各个复杂因素的结果,牵涉到薄膜形态、p型和n型半导体界面与材料溶解度,即使利用量子化学计算也无法预测太阳能电池效率。

如果要一一测试将会消耗大量时间,因此研究员想通过人工智能来提高搜寻效率。

为减少计算机筛选数量,研究团队先从约500项研究中收集了1,200份有机太阳能数据,再用机器学习算法“随机森林(RandomForest)”建构了一组模型,其中结合有机太阳能的能隙、分子量、化学结构、转换效率与电子特性资料,能预测潜力设备的理论转换效率。

“随机森林”可找出材料性能与有机太阳能实际效率的相关性,团队则善加利用这一优势,将模型用来筛选新型聚合物的理论转换效率,并成功找出一种先前从未测试的聚合物。

虽然实际测试之后结果不如预期,但该模型在材料结构与性质提供许多有用的见解。研究员认为,只要加入更多的资料,象是聚合物在水中的溶解度等,就可以进一步提高模型实用性。

佐伯昭纪表示,该模型并不完美,准确度仅20%~50%。不过机器学习能够实时预测实验室需要数月才能得到的结果,可大大提升太阳能电池开发速度。显然这项机器学习技术还不能无法完全取代人,但仍可为分子设计师提供关键材料选项、分担工作量,目前研究已发表在《TheJournalofPhysicalChemistryLetters》。

原标题:加速有机太阳能电池进展 日本用 AI 寻找聚合物材料

日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛日本用AI寻找聚合物材料 助有机太阳能踏进商业化门槛。老虎机游戏

标签:

分享到:

上一篇:首頁

下一篇:歡迎您

老虎机游戏版权与免责声明:凡本网注明[来源:老虎机游戏]的所有文字、图片、音视和视频文件,版权均为老虎机游戏(lidunkj.com/avvvb/3893043710.html)独家所有。如需转载请与3171672752联系。任何媒体、网站或个人转载使用时须注明来源“老虎机游戏”,违反者本网将追究其法律责任。

本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。

联系我们

广告联系:3171672752
展会合作:3171672752
杂志投稿:3171672752

网站简介|会员服务|联系方式|帮助信息|版权信息|网站地图|友情链接|法律支持|意见反馈

版权所有 2019-2020 老虎机游戏(lidunkj.com/avvvb/3893043710.html)

  • 经营许可证
    粤B2-20150019

  • 粤ICP备
    14004826号

  • 不良信息
    举报中心

  • 网络110
    报警服务

网站客服热线

3171672752

网站问题客服

3171672752